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DYNAMIC PROBLEM OF THE INTERACTION OF A CIRCULAR DIE WITH SOIL 

REGARDED AS AN ELASTOVISCOPLASTIC HALF-SPACE 

A. M. Ii'nitskii, O. V. Kantur, and G. V. Rykov UDC 624.131.3+624.131.5 

A numerical solution is obtained for an axisymmetric two-dimensional problem concerning 
the interaction of a circular die with soil regarded as an elastoviscoplastic half-space and 
subjected to a dynamic load. The problem of the motion of a circular die on an elastic half- 
space subjected to dynamic loading was solved in [i, 2]. In [3], a two-dimensional formula- 
tion was used to numerically solve the problem of the impact of a flat bar-shaped die against 
a half-space modeling an elastoplastic medium. 

In the present study, soil is regarded as an elastoviscoplastic medium with constitutive 
equations [4] accounting for the effect of strain rate on volume compressibility. Shear 
strains are described within the framework of an elastoplastic theory of flow [5]. The re- 
sults are compared with elastic and elastoplastic calculations, as well as with experimental 
data [6] indicating the need to allow for the viscosity of soil when calculating loads on 
bodies undergoing dynamic interaction with soil. 

i. The deformation of an elastoviscoplastic medium is described by the following system 
of governing equations [4]: 

a6 1 ao 
= ~ a7 + g(~ - / (~))' ( 1 . 1 )  

E = E (~), Oo/Ot > O; E = E , ( o , ~ ) ,  O~/Ot ~ O; 

d ~ j  " " t ( 1  2 )  
2Ge~j = -7 i -  + ~Sij ,  e~j = s~j - -  y ~6~ s, e = e~k; 

I~2(~), ~= I (1.3) 
J2 = ~ ~ ~ h .  

Here, oij and eij are components of the stress and strain tensors; J2 = (i/2)SijSij is 

the second invariant of the deviator of the stress tensor; Sij = oij - o6ij; ~ij = 8eij/St; 

g(z) > 0 at z > 0; g(z) ~ 0 at z ! 0; f(g) is the statistical compression diagram of the 
medium; E(e) = ~'(e) is a function characterizing the instantaneous loading of the medium 
at ~ + ~; ~(e) is the limiting dynamic compression diagram; G is the shear modulus; d~ij/dt = 

dSij/dt - Sik~jk - Sjk~ik is the derivative of the stress-tensor deviator in accordance with 

Jaumann [5]. 

The plasticity function in (1.3) was written in the form of the following linear rela- 
tion, in accordance with available empirical data [4] 

$r'(o) = ko + b ( 1 . 4 )  

(k and b are empirical coefficients characterizing internal friction and cohesion in the 
soil). 

We now introduce the cylindrical coordinate system i, j, k = x, r, 8. The problem will 
be solved in an axisymmetric formulation. In this case, the parameters of motion and the 
stress-strain state of the medium are independent of the angle 8. The x axis coincides with 
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the axis of the die. The part of the boundary FI, coincident with the soil surface, is "cov- 
ered" by a die radius R (r ! R) acted upon by a momentary load P(t) > 0 at t J T (at t > ~, 
P = 0). The part of the boundary F I at r > R is free of stresses (Oxx = O, Oxr = 0). 

The equation of motion of the die has the form 

M~d~ = SP(t)-  SaladS, ( 1 . 5 )  
S 

where M is the mass of the die; S is its area; Oxx are the contact stresses under the die. 

Besides the boundary FI, in numerically solving the problem we introduce two additional 
boundaries (nonphysical): a vertical boundary F 2 (r = R m ~ 3R) and a horizontal boundary F 3 
(x = X m ~ 0.02 Cl, where c I is the velocity of elastic longitudinal waves in the soil). 
These boundaries enclose the theoretical region. It was established that such locations for 
the boundaries F 2 and F 3 do not introduce errors into the results calculated for the active 
phase of the process. 

On the boundary F2, we assigned conditions of slip along the rigid surface without 
friction (OxrIF 2 = O, VrIF2 = O, v r is the radial velocity of the soil). On the boundary 

F3, we assigned conditions corresponding to contact with a rigid barrier. 

2. We used the Wilkins method to numerically solve system (1.1)-(1.5) with the corre- 
spending boundary conditions. The theoretical region was covered by a rectangular grid which was 
made denser as it approached the die. It was here that the largest stress gradients were 
found. In the region of contact with the die, Ax = Ar = R/8. 

In calculating the stresses in the soil, we used relations that were equivalent to (i.i)- 
( 1 . 3 ) :  

d S  o = d S ~ j - Z S i ~ d t ,  d o = d o ~  ( 2 . 1 )  

Here, dSij ~ and do ~ are the stress increments obtained with the assumption of triviality of 

the plastic strains, i.e., 

dS?j = (2Gel 5 + S~,Qih + SjkQ~),  do ~ = E~ dt. ( 2 . 2 )  

Then replacing the differentials by finite increments and allowing for the correspon- 
dence between the parameters of the medium and the time layers, in accordance with [7], we 
find from (2.1) that 

s~ +~ = s?~,~+~ - k ~ + ~ t s ~ + ' ;  ( 2 . 3 )  

= o,~+l - -  Lg nL. ( 2 . 4 )  

W i t h  a l l o w a n c e  f o r  ( 1 . 3 ) ,  we c a n  u s e  ( 2 . 3 )  t o  o b t a i n  a n  e x p r e s s i o n  s i m i l a r  t o  ~Lhat i n  
[7] for sijn+l: 

s ~ V 3 - ( o  i j  ~ S i j , n + l  ~t+l  o o ( 2 . 5 )  

With allowance for the fact that the shear strain has no effect on the mean stress o, we 
calculate the latter for the first step by using the following iteration procedure. The 
quantity Ao is the root of the equation 

F =  g A t  + A o / E  - -  Ae = O. 

C o n s i d e r i n g  t h a t  t h e  s o u g h t  v a l u e  o f  Ao i s  f o u n d  i n  t h e  n e i g h b o r h o o d  o f  v a l u e s  Ao x = 0 and  
Ao 2 = (Af + A~)/2 (Af, A~ are the stress increments corresponding to the static and dynamic 
diagrams) and inserting the values of the arguments g and E - corresponding to the middle of 
the step At (with the use of a linear approximation on the interval At) --we determine the 
first approximation 

Aa  (~) = (F, ,Aol - -  F1Ao2)/(FI  - -  F2) = --F1Ao2(F1 - -  F~) 

(F1 = F(Aol), F2 = F(Ao~)). 
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TABLE i 
J 

P,glcm ~ 
Sand w 

Type 1 1 ;54 
0 

Type 2 1,50 
0,05 

k 
b, I, Wa 
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0,04 
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t5,0 840 

t00,0 3,4 

m'-2-' ~" (MPa)• C Ma{a 
' v t  

t00 

38 

9,7 
0,84 
1,9 
0,5 

8,0 

i,5 

EI,,MPa 

E 2 , '  Me& 

4.t0 a 
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Until the specified accuracy is attained, the quantity Ao(J +1) 
with Newton's scheme 

A~(j+~) : ha(J) + F(Aa(~))/F'(Ad j~) (F' : dF/d(Ao)). 

is found in accordance 

Calculations were performed for the experimental conditions described in [6], for sandy 
soils, and for loam and clay [4]. 

The mechanical characteristics of the soils, entering into Eqs. (1.1)-(1.3), were taken 
in the form [4] 

E(e) : dq~(e)/ds, ~(~) : E(e + rnsv), E = Evict, 

I = K + m , # ' ) ,  g = (o - -  / K = K1/ , 

I F , , ,  ~ > o , ,  -[/~. 
a =  1 + -~--k .  q = q ~ •  E , ( c r . e ) =  ~Eo,, o ~ o , ,  

Corresponding values of the empirical coefficients El, Kz, and qz from [4, 8] are shown 
in Table i, where p and w are the density of the skeleton and the moisture content of the 
soil. 

Figure i compares numerical and analytical (curves i and 2) [9] solutions of the given 
problem in the case of the static introduction of a die with R = 0.6 m into an elastic medium. 
The results demonstrate the satisfactory accuracy of the given algorithm. 

Figure 2 shows results of calculations of the contact stresses under the center of the 
die (r = 0) with R = 0.3 m and an assigned velocity V(t) on the part Df the boundary F1(r 5 
R) (curve i). This velocity reflects experimental data. Curve 2 shows the same results for 
an elastoviscoplastic medium [4] (sand of type i, see Table i), curve 3 is for the elastoplas- 
tic medium, curve 4 for the elastic medium, and curve 5 shows the experimental results from 
[6] (the vertical lines represent confidence intervals for a confidence level ~ = 0.95). As 
the elastoplastic medium, we used Eqs. (1.2), (1.3) with elastic volume deformation. 
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We should point out the substantial effect of the inelastic properties of the medium on 

the contact stress - including on the stress averaged over the cross section <o> = ]~.IoxxdS. 
S 

Here, the best approximation of the test data is obtained with the model which considers the 
viscoplastic properties of the soil. Results of calculations of the stress in accordance 
with unidimensional theory for assigned V(t) over the entire boundary F I agree well with the 
results of two-dimensional calculations for the stresses under the center of the die at t < 
R/c I, when the effect of shear is negligible. 

A change in the die-soil contact conditions from adhesion to slip without friction led 
to a 7-12% change in Oxx. 

We also performed a series of calculations for the experimental conditions in [6], when 
the load P(t) on the die was specified in accordance with test measurements. Figures 3 and 
4 show the corresponding results of calculations for a die, with R = 0.3 m, located on sandy 
soil. 

Curves 1-5 in Fig. 3 correspond to the load on the die P(t) (line i) and the velocity of 
the die v(t) measured in tests and calculated for different conditions: 2 - experimental 
data from [6]; 3-5 - data calculated on the basis of equations of state (1.1)-(1.3) (2 - sand 
of type i; 4 - sand of type 2) and relaxational equations of state from [i0] (5 - sand of 
type 2). 

Curves 1-4 in Fig. 4 correspond to the stresses Oxx under the die at the center (a) and 
on the edge (b): 1 - experimental data; 2, 3 - calculation based on Eqs. (i.1)-(1.3) (2 - 
sand of type i; 3 - sand of type 2); 4 - calculation based on the equations in [i0] (sand of 
type 2). It is apparent that die velocity v(t) and the contact stresses Oxx(r , t) in its 
base calculated by means of Eqs. (1.1)-(1.3) agree satisfactorily with the experimental re- 
sults in [6]. 

We compared the results of calculation of the velocities v(t) and stresses Oxx(r , t) 
obtained from the model in [i0] and the model [4] based on Eqs. (1.].)-(1.3). It was found 
that the quantitative differences are within the experimental error. 

297 



A similar conclusion follows from analysis of data on the stress distribution in sandy 
soil of type I under a dye with R = 0.6. The data are shown in Fig. 5 (a - the model based 
on Eqs. (1.1)-(1.3); b - the model in [i0]). Here, regions 1-5 correspond to the stresses 

lOxxl = 0.1n MPa, n = 1-5, near the edges of the die 0.6 E lOxxl ~ 0.8 MPa. 

These findings indicate that, at least for the class of problems being examined, the 
relaxational equation of state proposed in [I0] (which is considerably more complex in struc- 
ture than the model in [4]) does not have any qualitative advantages. 

It should be noted that the type of soil (sand, clay, loam) has a significant effect 
both on the velocity of the die with assigned P(t) on the cover and on the stress state of 
the soil under the die. We performed calculations for cases similar to those considered in 
Fig. 3 but with the use of constants characterizing clay and loam- in accordance with [4]. 
It was found that interaction with these soils is accompanied by a sharp increase in the 
duration of the phase during which the v(t) decreases after reaching its maximum value. 
Also, for loam the maximum die velocity increases to 6.6 m/sec (for clay, the velocity nearly 
coincides with the analogous characteristics for sands). 

As was shown by the results of the calculations, the concentration of contact stresses 
Oxx on the base of the die (Figs. 4 and 5) reaches appreciable values near the edges of the 
die. This should be taken into account when analyzing experimental data, since the dimen- 
sions of the sensors and their location on the base may have a significant effect on the 
results of measurements. 

The theoretical results presented here and their comparisons with empirical data pro- 
vide evidence of the substantial effect of the viscous properties of soils on parameters of 
motion of dies and the stress state of soils in their base. 

An analysis of the mathematical models in [4, i0] - which account for the viscoplastic 
properties of soils - showed that, assuming a well substantiated choice of values for the 
necessary constants, their use in problems involving the interaction of a circular die with 
soil leads to similar results. 
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